Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.

نویسنده

  • Dietmar Paschek
چکیده

We examine five different popular rigid water models (SPC, SPCE, TIP3P, TIP4P, and TIP5P) using molecular dynamics simulations in order to investigate the hydrophobic hydration and interaction of apolar Lennard-Jones solutes as a function of temperature in the range between 275 and 375 K along the 0.1 MPa isobar. For all investigated models and state points we calculate the excess chemical potential for the noble gases and methane employing the Widom particle insertion technique. All water models exhibit too small hydration entropies, but show a clear hierarchy. TIP3P shows poorest agreement with experiment, whereas TIP5P is closest to the experimental data at lower temperatures and SPCE is closest at higher temperatures. As a first approximation, this behavior can be rationalized as a temperature shift with respect to the solvation behavior found in real water. A rescaling procedure inspired by the information theory model of Hummer et al. [Chem. Phys. 258, 349 (2000)] suggests that the different solubility curves for the different models and real water can be largely explained on the basis of the different density curves at constant pressure. In addition, the models that give a good representation of the water structure at ambient conditions (TIP5P, SPCE, and TIP4P) show considerably better agreement with the experimental data than the ones which exhibit less structured O-O correlation functions (SPC and TIP3P). In the second part of the paper we calculate the hydrophobic interaction between xenon particles directly from a series of 60 ns simulation runs. We find that the temperature dependence of the association is to a large extent related to the strength of the solvation entropy. Nevertheless, differences between the models seem to require a more detailed molecular picture. The TIP5P model shows by far the strongest temperature dependence. The suggested density rescaling is also applied to the chemical potential in the xenon-xenon contact-pair configuration, indicating the presence of a temperature where the hydrophobic interaction turns into purely repulsive. The predicted association for xenon in real water suggests the presence of a strong variation with temperature, comparable to the behavior found for TIP5P water. Comparing different water models and experimental data we conclude that a proper description of density effects is an important requirement for a water model to account correctly for the correct description of the hydrophobic effects. A water model exhibiting a density maximum at the correct temperature is desirable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature and length scale dependence of solvophobic solvation in a single-site water-like liquid.

The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculatio...

متن کامل

Thermal signature of hydrophobic hydration dynamics.

Hydrophobic hydration, the perturbation of the aqueous solvent near an apolar solute or interface, is a fundamental ingredient in many chemical and biological processes. Both bulk water and aqueous solutions of apolar solutes behave anomalously at low temperatures for reasons that are not fully understood. Here, we use (2)H NMR relaxation to characterize the rotational dynamics in hydrophobic h...

متن کامل

Modeling of the hydration shell of Adenine

The molecular geometry of complex of adenine with 8 water molecules was calculated with Hartree-Fock (HF). The standard 6-31G(d) basis set has been employed. The existence of C-H…O Hydrogen bonds between the water molecules and the hydrophobic part of nucleobase is stablished. We optimized structures and computed interaction energies of all complexes of adenine with water molecules step by step...

متن کامل

Hydrophobic Effects on a Molecular Scale

A theoretical approach is developed to quantify hydrophobic hydration and interactions on a molecular scale, with the goal of insight into the molecular origins of hydrophobic effects. The model is based on the fundamental relation between the probability for cavity formation in bulk water resulting from molecular-scale density fluctuations, and the hydration free energy of the simplest hydroph...

متن کامل

Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover.

Small and large hydrophobic solutes exhibit remarkably different hydration thermodynamics. Small solutes are accommodated in water with minor perturbations to water structure, and their hydration is captured accurately by theories that describe density fluctuations in pure water. In contrast, hydration of large solutes is accompanied by dewetting of their surfaces and requires a macroscopic the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 14  شماره 

صفحات  -

تاریخ انتشار 2004